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ABSTRACT
We consider a Two Phase Exploration problem where an
agent interacts with an unknown environment in two sepa-
rate phases. The first is the exploration phase and the sec-
ond is the evaluation phase. The agent is initially allowed to
explore the environment for a limited number of interactions
after which the agent’s performance is evaluated. Since the
agent is not evaluated on the rewards collected in the explo-
ration phase, we propose using a Pure Exploration strategy
in this phase and switching to an Explore-Exploit strategy
in the evaluation phase.

We extend the fixed confidence Pure Exploration problem
of Multi Armed Bandits to episodic fixed-horizon Markov
Decision Processes (MDP). Here, the goal of an agent in-
teracting with the MDP is to reach a high confidence in
as few episodes as possible. We propose Posterior Sam-
pling for Pure Exploration (PSPE), a Bayesian algorithm
for pure exploration in MDPs. We empirically show that
PSPE achieves deep exploration and the number of episodes
required by PSPE for reaching a fixed confidence value is ex-
ponentially lower than random exploration and lower than
regret minimizing algorithms such as Posterior Sampling for
Reinforcement Learning (PSRL). For the two phase explo-
ration problem, we propose using PSPE in the exploration
phase and PSRL in the evaluation phase. We empirically
show that PSPE achieves a good posterior and the regret
incurred in the evaluation phase by using PSPE in the ex-
ploration phase is lower than the regret incurred by using
random exploration or PSRL.

CCS Concepts
•Computing methodologies→ Sequential decision mak-
ing;
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1. INTRODUCTION
Consider the situation where an agent interacts with an

environment in two phases. The first phase is for training
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and fine tuning, where the agent is allowed to explore its en-
vironment for a limited amount of time without being eval-
uated on the rewards it receives. In the second phase, the
goal of the agent is to maximise the sum of the rewards col-
lected. Such situations are commonly seen in competitions,
where there is a limited training phase before the actual
competition begins. Both the training phase and the final
competition will be on the same environment. The score
of the agent in the training phase does not matter and it
can use this phase to learn the best strategy to maximise its
score in the actual competition. We call the initial training
phase as the exploration phase and the final competition as
the evaluation phase.

We consider environments which are modelled as episodic
fixed-horizon Markov Decision Processes (MDP) with a fi-
nite number of states and actions. The agent interacts with
the environment in episodes, each consisting of H time steps.
In the “tabula rasa” setting, the agent has no prior knowl-
edge about the MDP except the number of states S, actions
A and the episode length H. In each phase, the agent has
a different objective and faces a different kind of interactive
learning problem.

In the evaluation phase, the agent’s goal is to maximize
the sum of rewards received while learning the MDP’s pa-
rameters. This is the classical Reinforcement Learning (RL)
[29] problem. This is an instance of an online learning prob-
lem, as the learning happens while interacting with the MDP
and the goal is to optimize the online performance of the
agent. Since the agent learns about the MDP by interacting
with it, it faces the exploration vs. exploitation trade-off.
At each step, the agent may choose to exploit its current ex-
perience by executing the action that currently seems best
or explore a different actions which could result in gaining
information that would lead to higher rewards in the future.
The agent should balance exploration and exploitation so
that it converges to an optimal policy and also receives near
optimal rewards.

In the exploration phase, the agent’s goal is to maximize
the probability of following an optimal policy of the MDP.
We call this probability as the confidence of the agent. This
is the Pure Exploration (PE) problem. This is an instance
of an active learning problem, as the agent has the ability
to choose the sequence of policies to try, to maximize the
confidence. Since the rewards received during this phase do
not matter, the agent can execute actions solely based on the
objective of reaching a high confidence as fast as possible.

We are interested in model based Bayesian algorithms. In
these algorithms, the agent maintains a prior distribution on



the parameters of the MDP and computes posteriors based
on the rewards and transitions observed. The algorithm
uses these posteriors to pick actions according to the goal
of the agent. The posterior distributions can also be used
for sampling an instance of a MDP and for calculating the
confidence of the agent.

Both the RL and PE problems have been studied in the
case of stochastic Multi Armed Bandits (MAB). These are
degenerate episodic fixed horizon MDPs, with a single state,
A actions (also called arms of the bandit) and single step
episodes. The RL problem for bandits is the classical prob-
lem of reward maximization while learning [16]. The Thomp-
son Sampling (TS) [31] algorithm is a Bayesian algorithm for
maximizing the cumulative reward while learning in ban-
dits. The idea is to sample an instance of a bandit from
the posterior at each step and pull its optimal arm. The
PE problem for bandits is known as the best-arm identifi-
cation problem. The TS algorithm is not suitable for PE as
it pulls the estimated best arm almost all the time, and it
takes a very long time to ascertain that none of the other
arms offer better rewards. The Pure exploration Thompson
Sampling(PTS)[25] algorithm modifies TS by adding a re-
sampling step that prevents pulling the estimated best arm
too often and helps it in achieving higher confidence in lesser
number of arm pulls.

TS serves as a general sampling technique for Bayesian
learning and can be easily extended to the complete RL
problem on episodic fixed-horizon MDPs. The Posterior
Sampling for Reinforcement Learning (PSRL) algorithm [18]
maintains a prior distribution over MDPs. At the beginning
of each episode, it samples a MDP instance from the current
posterior and finds an optimal policy for the sampled in-
stance using dynamic programming. It then acts according
to this policy for the duration of the episode. It updates the
posterior according to the rewards and transitions witnessed
during the episode. Convergence to the optimal policy is
guaranteed as samples are drawn from the full posterior and
the mean of the posterior approaches the true MDP as the
number of episodes increase. In the bandit case, this method
is equivalent to TS.

In this paper we propose a model based Bayesian algo-
rithm for the PE problem in stochastic episodic fixed-horizon
MDPs called PSPE. PSPE modifies PSRL by adding a re-
sampling step. We provide a simple procedure for finding
the confidence using the posterior distributions. We empiri-
cally show that PSPE achieves deep exploration and reaches
a high confidence faster than PSRL and exponentially faster
than random exploration. We claim that the posterior dis-
tribution obtained after running PSPE for a fixed duration
can be used by PSRL to obtain better rewards. For the two
phase exploration problem, we empirically show that using
PSPE in the exploration phase produces posteriors which
can be used by PSRL in the evaluation phase to get higher
rewards than using random exploration or PSRL in the ex-
ploration phase.

2. EPISODIC FIXED HORIZON MARKOV
DECISION PROCESSES

An episodic fixed horizon Markov Decision Process M is
given by the tuple 〈S,A, R, P,H, ρ〉. Here S = {1, ..., S}
and A = {1, ..., A} are finite sets of states and actions re-
spectively. The agent interacts with the MDP in episodes

of length H steps. The initial state distribution is given
by ρ. In each step h = 1, ..., H of an episode, the agent
observes a state sh ∈ S and performs an action ah ∈ A.
It receives a reward rh sampled from the reward distribu-
tion R(sh, ah) and transitions to a new state sh+1 sampled
from the transition probability distribution P (sh, ah). Let
the average reward received for a particular state-action be
R̄(s, a) = E[r|r ∼ R(s, a)].

For fixed horizon MDPs, a policy π is a mapping from
s ∈ S and time step h = 1, ..., H to action a ∈ A. In Ap-
pendix A, we give an example MDP to show that optimal
actions may depend on both s and h. The number of de-
terministic policies for a MDP is ASH , which is quite large
even for small values of S,A and H. The value of a state
s and action a under a policy π is defined as the expected
sum of rewards attained starting at state s at step h, per-
forming action a and acting according to π until the end of
the episode.

Qπ(s, a, h) = E
[
R̄(sh, ah) +

H∑
i=h+1

R̄(si, π(si, i))

]
Let Vπ(s, h) = Qπ(s, π(s, h), h). A policy π∗ is an opti-

mal policy for the MDP if π∗ ∈ arg maxπ Vπ(s, h) for all
s ∈ S and h = 1, ..., H. When the rewards and transition
probabilities are known, an optimal policy for the MDP can
be found using the Backward Induction[23] algorithm, de-
scribed in Appendix B. a MDP may have multiple optimal
policies. For a MDP M , let ΠM be the set of optimal poli-
cies.

The mean episodic reward of a policy π is given by µ(π).

µ(π) =
∑
s∈S

ρ(s)Vπ(s, 1)

Let µ∗ = maxπ µ(π). The gap of a policy is defined as
∆(π) = µ∗ − µ(π).

2.1 Posterior Sampling for RL
PSRL is a natural extension of TS to episodic fixed-horizon

MDPs. Consider a MDP with S states, A actions and hori-
zon length H. PSRL maintains a prior distribution on the
set of MDPs M, i.e on the reward distribution R (on SA
variables) and the transition probability distribution P (on
S2A variables). At the beginning of each episode t, a MDP
Mt is sampled from the current posterior. Let Pt and Rt
be the transition and reward distributions of Mt. The set
of optimal policies ΠMt for this MDP can be found using
Dynamic Programming (see Appendix B) as Pt and Rt are
known. The agent samples a policy πt from ΠMt and fol-
lows it for H steps. The rewards and transitions witnessed
during this episode are used to update the posteriors. Let f
be the prior density over the MDPs and Ht be the history
of episodes seen until t − 1. Let sh,t be the state observed,
ah,t be the action performed and rh,t be the reward received
at time h in episode t. Algorithm 1 describes PSRL.

Like TS, PSRL maintains a prior distribution over the
model, in this case a MDP. At each episode, it samples a
model from the posterior and acts greedily according to the
sample. TS selects arms according to their posterior proba-
bility of being optimal and PSRL selects policies according
to the posterior probability they are optimal. It is possible
to compute the posterior efficiently and sample from it by a



Algorithm 1 PSRL

1: H1 = {}
2: for t = 1, 2, ... do
3: Sample Mt ∼ f(·|Ht)
4: Choose a policy πt at random from ΠMt

5: Observe initial state s1,t

6: for h = 1, ..., H do
7: Perform action ah,t = πt(sh,t, h)
8: Observe reward rh,t and next state sh+1,t

9: end for
10: Ht+1 = Ht ∪ {(sh,t, ah,t, rh,t, sh+1,t)|h = 1..H}
11: end for

proper choice of conjugate prior distributions or by the use
of Markov Chain Monte Carlo methods.

3. POSTERIOR SAMPLING FOR PE
PSRL is not suitable for pure exploration since it is de-

signed for maximizing cumulative rewards and hence fol-
lows an optimal policy very often. PSPE modifies PSRL
by adding a re-sampling step. This is an extension of the
Top-Two sampling idea of PTS to PSRL. This prevents it
from following an estimated optimal policy too frequently.
The algorithm depends on a parameter β, where 0 ≤ β ≤ 1,
which controls how often an optimal policy of a sampled
MDP is followed. At each episode t, PSPE samples a MDP
Mt and finds its set of optimal policies ΠMt . With probabil-
ity β it follows a policy from this set. With probability 1−β
it re-samples MDPs until a different set of policies ΠM̃t

is
obtained. It then follows a policy from the set ΠM̃t

− ΠMt

for H steps. Algorithm 2 describes PSPE. In the case of
bandits, PSPE is equivalent to PTS.

Algorithm 2 PSPE

1: H1 = {}, t = 1
2: for t = 1, 2, ... do
3: Sample Mt ∼ f(·|Ht)
4: Sample B ∼ Bernoulli(β)
5: if B = 1 then
6: Choose a policy πt at random from ΠMt

7: else
8: repeat

9: Re-sample M̃t ∼ f(·|Ht)
10: until ΠM̃t

−ΠMt 6= ∅
11: Choose a policy πt at random from ΠM̃t

−ΠMt

12: end if
13: Observe initial state s1,t

14: for h = 1, ..., H do
15: Perform action ah,t = πt(sh,t, h)
16: Observe reward rh,t and next state sh+1,t

17: end for
18: Ht+1 = Ht ∪ {(sh,t, ah,t, rh,t, sh+1,t)|h = 1..H}
19: end for

3.1 Computing the Confidence
Let M∗ be the true underlying MDP and let Π∗ be its set

of optimal policies. The confidence of the agent αt at episode
t is the probability of sampling a MDP Mt and following one
of its optimal policies πt such that πt ∈ Π∗.

We define the confidence of a set of policies Π as the prob-
ability of sampling a MDP M and following a policy from
ΠM such that it is also in Π. Let xΠ(M) denote the proba-
bility of picking a policy from ΠM which is also in Π.

xΠ(M) =
|ΠM ∩Π|
|ΠM |

The confidence of Π, denoted by αΠ can be expressed as
the expectation of xΠ(M) computed over the current poste-
rior distribution of MDPs.

αΠ = EM [xΠ(M)] =

∫
M∈M

xΠ(M)f(M |H)dM

Due to the Law of Large Numbers, this expectation is the
same as this summation in the limit.

αΠ = lim
n→∞

∑n
j=1 xΠ(Mj)

n

Where Mj are drawn independently from f(·|H) for all
j = 1, ..., n. This gives an easy way of approximating αΠ, by
drawing a large number of sample MDPs from the posterior
and finding the average value of xΠ(M) for these samples.

At episode t, the confidence of the agent is the same as
the confidence over the set of policies Π∗, i.e, αt = αΠ∗ . We
monitor the value of αt and count the number of episodes
required to reach a certain high confidence value to evaluate
the performance of our algorithm. Note that our algorithm
itself does not require the confidence value for its operation.

3.2 Empirical Evaluation
We compare the performance of PSPE with PSRL and

random exploration. We measure the number of episodes
required by each of these algorithms to reach a high confi-
dence value. To ease the procedure of computing posterior
distributions and sampling MDPs from the posterior, we
use suitable conjugate-prior distributions. For the transition
probabilities, we assume a uniform Dirichlet prior and a cat-
egorical likelihood, and for reward distribution, we assume
a Gaussian prior (N (0, 1)) and a Gaussian likelihood with
unit variance for each state-action pair. We calculate αΠ∗

by sampling 10000 independent MDPs from the posterior.
The experiment tracks the first time when the confidence
value exceeds a fixed confidence of 0.90, 0.95 and 0.99. All
the results are averaged across 50 trials. We choose β = 1/2
in PSPE.

We generate a random episodic fixed-horizon MDP having
3 states, 3 actions and horizon length 3. The total number of
deterministic policies for this MDP are 33×3. The transitions
are stochastic and Gaussian noise is added to the rewards
produced by this MDP. Since it is computationally inten-
sive to calculate the confidence after each episode, we only
calculate it after every 10,000 episodes. Figure 1 displays
the average number of episodes required by each algorithm
to reach each fixed confidence. PSPE reaches a high con-
fidence in lesser number of episodes than both PSRL and
random exploration.

Stochastic Chains (Figure 2) proposed by Osband & Van
Roy [22, 21], is a family of MDPs which consist of a long
chain of N states. At each step, the agent can choose to
go left or right. The left actions (indicated by thick lines)



Figure 1: Number of Episodes required to reach a
given confidence in Random MDP

Figure 2: Stochastic Chain MDP

are deterministic, but the right actions (indicated by dotted
lines) result in going right with probability 1 − 1/N or go-
ing left with probability 1/N . The only two rewards in this
MDP are obtained by choosing left in state 1 and choosing
right in state N . These rewards are drawn from a normal
distribution with unit variance. Each episode is of length
H = N . The agent begins each episode at state 1. The
optimal policy is to go right at every step to receive an ex-
pected reward of (1− 1

N
)N−1. For the RL problem on these

MDPs, dithering strategies like ε-greedy or Boltzmann ex-
ploration are highly inefficient and could lead to regret that
grows exponentially in chain length.

We consider a stochastic chain of length 10. The total
number of deterministic policies for this MDP are 210×10.
We calculate the confidence after every 100 episodes. Fig-
ure 3 displays the average number of episodes required by
each algorithm to reach each fixed confidence of 0.90, 0.95
and 0.99. Both PSRL and PSPE reach the desired confi-
dence fairly quickly, but random exploration requires a very
large number of episodes.

On this family of MDPs, the number of episodes required
to reach a fixed confidence grows exponentially when us-
ing random exploration. In the case of PSRL and PSPE,
this number grows linearly. We consider stochastic chains of
length 2 to 10. We measure the number of episodes required
to reach a confidence of 0.95 for each of these MDPs us-

Figure 3: Number of Episodes required to reach a
given confidence in Stochastic Chain of length 10

ing random exploration, PSRL and PSPE. Figure 4 displays
the results. The number of episodes required by PSPE and
PSRL is practically the same and grows very slowly for this
family of MDPs. Random exploration however, is highly
inefficient and the number of episodes it requires grows ex-
ponentially. This is because both PSRL and PSPE are able
to achieve “Deep Exploration” [17, 19] whereas random ex-
ploration does not. Deep Exploration means that the algo-
rithm selects actions which are oriented towards positioning
the agent to gain useful information further down in the
episode.

3.3 Discussion
PSPE reaches a high confidence level in lesser number

of episodes than both PSRL and random exploration. The
random exploration strategy would choose to follow a policy
uniformly at random. It takes the most number of episodes
as it treats each policy equally, without considering the re-
wards received. It does not leverage the fact that some poli-
cies can be quickly ruled out as they are clearly suboptimal.
On the other hand, PSRL often follows the policy with the
highest confidence and does not spend much effort in refin-
ing its knowledge of other policies. The re-sampling step in
PSPE ensures that the algorithm adaptively chooses policies
such that nearly optimal policies are chosen more often than
policies which are clearly suboptimal.

The random exploration policy is highly inefficient as the
number of episodes it requires to reach a fixed confidence
level grows exponentially with the size of the MDP. PSPE
is able to achieve deep exploration as demonstrated on the
stochastic chain MDP. The number of episodes required by
PSPE is significantly less as it is able to direct its effort to-
wards gathering information about rewards and transitions
further down the chain.

The confidence of the agent αt → 1 as t → ∞. Using



Figure 4: Number of episodes required to reach a
confidence of 0.95 for various chain lengths

Theorem 1 from Russo [25], we claim that (1 − αt) → 0 at
a rate exp{−tΓ∗1/2} under PSPE with β = 1/2. Here

Γ∗1/2 = O((
∑
π/∈Π∗

∆(π)−2)−1)

The rate of convergence for random exploration is of the or-
der of O(minπ/∈Π∗ ∆(π)2)/ASH). The convergence of PSPE
is faster as it depends on the individual policy gaps whereas
for random exploration, it depends only on the smallest gap.

4. TWO PHASE EXPLORATION
Consider a competition which involves an autonomous

agent exploring an unknown environment. Typically in such
competitions, there are two phases of interaction. In the first
phase, the agent is allowed to interact with the environment
without being evaluated on the rewards it receives. This is
the exploration phase. In the second phase, it interacts with
the same environment, but the rewards received are used to
evaluate the agent’s performance. This is the evaluation
phase. The purpose of the first phase is for the agent to fine
tune its performance on the environment so that it gets the
best possible rewards in the second phase. The first phase
has a limited number of interactions after which the second
phase begins.

It is not entirely apparent which strategy the agent should
use in the first phase. The agent could ignore the fact that
the rewards accumulated in the first phase do not matter and
use a reward maximizing strategy in both phases. It could
explore randomly during the first phase, and then switch
to a reward maximizing strategy in the second phase. It
could just as well use a pure exploration strategy and then
a reward maximizing strategy in the second phase. The
strategy to use could also depend on the budget of the first
phase.

Consider the case where the environment is an episodic

Figure 5: Evaluation phase regret in Random MDP

fixed horizon MDP. Ideally, having good posterior distri-
butions after the exploration phase should result in lower
regret in the evaluation phase. If the posterior distributions
are concentrated around the true parameter values of the
MDP, then PSRL will follow an optimal policy with high
probability resulting in lower regret. As we only have a lim-
ited number of episodes in the exploration phase, the agent
should try to obtain good posteriors in as few episodes as
possible. Since PSPE reaches a high confidence value faster
than PSRL and random exploration, an optimal policy of a
sampled MDP will be an optimal policy of the true MDP
with high probability. Hence, we argue that lower regret is
incurred by PSRL in the evaluation when PSPE is used in
the exploration phase.

4.1 Empirical Evaluation
We consider three different strategies as discussed above.

These either use PSRL, PSPE or random exploration in
the exploration phase and switch to PSRL in the evalua-
tion phase. All the results are averaged across 50 trials. We
consider the Random MDP having 3 states, 3 actions and
horizon length 3. The exploration phase lasts for the first
400,000 episodes and then the regret of the agents is mon-
itored for the next 400,000 episodes. Figure 5 displays the
regret incurred. PSPE incurs the least amount of regret in
the exploration phase. PSRL on the other hand incurs the
most regret.

Next we consider the stochastic chain of length 10. The
exploration phase lasts for the first 10,000 episodes and then
the regret of the agents is monitored for the next 10,000
episodes (Figure 6). In this MDP, random exploration in-
curs the most amount of regret. This is because random
exploration does not gain good posteriors on the rewards
and transitions further down the chain as it is unable to
achieve deep exploration. PSPE and PSRL however incur
very low regret.



Figure 6: Evaluation phase regret Stochastic Chain

We also investigate the dependence of the regret in the
evaluation phase on the budget of the exploration phase
when using PSPE, PSRL or random exploration. On the
Random MDP, we let the budget of the exploration phase
vary from 1000 to 100,000 in steps of 1000. After the first
phase, the evaluation phase lasts for 10,000 episodes. The
results are plotted in Figure 7. Random exploration incurs
lower regret when the exploration phase budget is less than
50,000 episodes. After 50,000 episodes however, PSPE in-
curs lower regret. This result agrees with Figure 5 when we
set the exploration budget as 400,000 episodes.

On the stochastic chain MDP of length 10, we let the bud-
get of the exploration phase vary from 100 to 10,000 in steps
of 100. After the first phase, the evaluation phase lasts for
10,000 episodes. The results are plotted in Figure 8 Ran-
dom exploration incurs the highest regret of all the three.
This is because it incurs a very high regret during the initial
episodes of the evaluation phase (Figure 6), as it does not
achieve deep exploration as seen in Figure 4. Both PSPE
and PSRL achieve very low regrets.

4.2 Discussion
For the two phase exploration problem, using PSPE in-

stead of random exploration in the exploration phase seems
to give lower regret in the evaluation phase. In the case of
the Random MDP, random exploration performs well when
the exploration phase’s budget is low. We argue that this
is because the MDP was generated randomly, it will not be
sparse, i.e., there will be some non-zero probability of tran-
sitioning from one state to any other state and every action
will result in some non-zero reward. The difference in per-
formance can be clearly seen when we consider stochastic
chain MDPs, where random exploration does not perform
well at all. On the stochastic chain, PSPE and PSRL incur
almost the same amount of regret in the evaluation phase.
On the Random MDP however, PSPE has lesser regret than

Figure 7: Evaluation phase regret vs Exploration
phase budget in Random MDP

Figure 8: Evaluation phase regret vs Exploration
phase budget in Stochastic Chain



Figure 9: Number of times each arm is pulled

PSRL. By using PSPE in the exploration phase, we are able
to achieve a higher confidence as well as a better posterior
than PSRL or random exploration. This posterior can be
used by PSRL in the evaluation phase to get better rewards.

In the analysis of TS by Agarwal & Goyal [1], they state
that after T steps, arm i’s posterior distribution is tightly
concentrated around its true mean reward with high proba-
bility if it has been pulled a sufficient number (O((lnT )/∆2

i ),
where ∆i is its arm gap) of times. This implies that arms
with a low arm gap (high arm mean) must be pulled more
often than arms with a high arm gap (low arm mean). Con-
sider a 5 armed Bernoulli bandit with arm means (0.1, 0.2,
0.3, 0.4, 0.5). We run TS, PTS and random exploration
for T = 1000 steps and plot the number of times each arm
has been pulled in Figure 9. We compare the plot with
L(i) = C(lnT )/∆2

i for the first 4 arms with a suitable value
of C.

Random exploration is equivalent to pulling arms uni-
formly, as each arm has the same probability of being pulled.
This causes random exploration to pull clearly suboptimal
arms more often than necessary. TS pulls the optimal arm
too often, which prevents the posteriors of other arms from
tightly concentrating around their respective arm means.The
number of times PTS pulls the arm i is very close to to the
value of L(i) for all the suboptimal arms. The posterior
distribution of the arms will be tightly concentrated around
their respective arm means. PTS is able to adaptively de-
cide which arm to pull so that it achieves the best possible
posterior within the given budget. Thus in the two phase
exploration problem, the posterior obtained by using PTS
in the exploration phase can be used by TS in the evalu-
ation phase to achieve very low regret. Since PSPE uses
the same top two sampling procedure of PTS, we argue that
PSPE also achieves the best possible posterior within the
exploration budget.

5. RELATED LITERATURE
Both PSPE and PSRL are based on algorithms which were

originally developed for Multi Armed Bandits. MAB prob-
lems have been widely studied in a variety of areas since as
early as the 1930s. One of the earliest works on this problem
was by Thompson [31] who was studying bandit problems in
the context of clinical trials. Robbins [24] derived strategies
that asymptotically attain an average reward that converges
in the limit to the reward of the best arm. Lai and Robbins
[16] provide asymptotic lower bounds on the expected re-
gret of any algorithm for the stochastic MAB problem. The
Upper Confidence Bound family of algorithms for bandits,
which are based on the principle of Optimism in the Face
of Uncertainty (OFU) have been shown to have good the-
oretical guarantees. The Upper Confidence Bound (UCB)
[2] algorithm is a popular approach based on the OFU prin-
ciple. Thompson Sampling (TS) [31] is a natural Bayesian
algorithm for the MAB problem that uses randomized prob-
ability matching. Chappel and Li [6] demonstrate that em-
pirically TS achieves regret comparable to the lower bounds
of Lai and Robbins[16]. A frequentist regret analysis of TS
was first given by Agarwal & Goyal [1] for Bernoulli MABs
with uniform prior. Russo & Van Roy [26] provide Bayesian
regret bounds for TS using information theoretic tools. Re-
fer to [10] and [5] for a comprehensive discussion of these
algorithms.

Pure exploration in MABs is the problem of identifying
the best arm within a fixed budget of arm pulls or up to
a fixed confidence in as few arm pulls as possible. Bubeck
et al.[5] provide a brief survey of this problem. Jamieson &
Nowak [12] review many of the algorithms proposed for this
problem in the fixed confidence setting. Russo [25] proposed
PTS along with two other Bayesian algorithms for this prob-
lem along with a frequentist analysis of their performance.
In the case of MDPs, PTS generalized to PSPE.

Several efficient algorithms with theoretical guarantees
have been proposed for the Reinforcement Learning prob-
lem. The UCRL2 [11] algorithm is based on the OFU prin-
ciple and achieves logarithmic regret. PSRL was first pro-
posed by Strens[28] under the name of Bayesian dynamic
programming and a Bayesian regret bound was provided by
Osband et al.[18]. Algorithms which are PAC-MDP [13]
have a high probability bound on the number of times the
algorithm acts sub-optimally. Algorithms which are PAC-
MDP include R-Max [4], E3 [14], Delayed Q-Learning[27],
BEB[15]. Refer to [10] and [30] for a comprehensive dis-
cussion of these algorithms. Dann & Burnskill [7] propose
UCFH, which is an algorithm suitable for episodic fixed hori-
zon MDPs and is based on the OFU principle. UCFH has
a PAC guarantee for the number of episodes required to be
close to the optimal episodic reward.

There exists only a few theoretical works on the Pure Ex-
ploration problem in MDPs. Thrun [32] considered the prob-
lem of active learning in deterministic environments and pro-
vided bounds on the number of actions required for finding
an optimal policy. This bound can be significantly improved
as shown by Szepesvari [30]. Evan-Dar et al. [9] consider
the problem in finite stochastic MDPs under the assumption
that the agent can reset the state of the MDP to an arbi-
trary state. Our algorithm PSPE is suitable for stochastic
MDPs and does not require resets to arbitrary states as the
MDP is episodic.



6. EXTENSIONS AND FUTURE WORK
Osband & Van Roy [20] suggest a few approaches to adapt

PSRL for infinite horizon discounted MDPs. These methods
could also be used for PSPE. A simple way is to impose an
artificial episode length H = O((1−γ)−1) when γ is the dis-
count factor. Algorithm such as UCRL [11] and REGAL[3]
start a new episode when the total number of visits to any
state and action has doubled. We can also apply the same
technique for PSRL and PSPE.

PSRL and PSPE require solving MDPs through dynamic
programming at each step. An alternative approach which
avoids solving sampled MDPs could be to use value func-
tion sampling [8]. Osband et al. propose RLSVI [22] which
samples from the distribution over value functions and is de-
signed for efficient exploration in large MDPs and generalizes
through linearly parameterized value functions. Bootstrap
DQN [17], which uses Bootstrap for posterior sampling and
a deep neural network for representing value functions has
been shown to generalize efficiently and achieve deep explo-
ration in environments with extremely large state spaces.
These approaches are similar to PSRL as they act greedily
according to the sampled instance and are designed to max-
imise the cumulative reward. However, extending the value
function sampling approach to the idea of Top-Two sam-
pling is not straight forward. Using value function sampling
approaches to achieve pure exploration remains an open re-
search direction.

We only provide a loose convergence rate for the confi-
dence of PSPE. This bound can be improved with a thor-
ough analysis. We empirically show that PTS adaptively
pulls arms in order to obtain a good posterior distribution.
Analysis of the number of times each arm is pulled by PTS
could offer further insights.

7. CONCLUSION
In this paper, we pose the Two Phase Exploration prob-

lem which consists of separate exploration and evaluation
phases. We present Posterior Sampling for Pure Explo-
rations as a Bayesian algorithm for the problem of Pure ex-
ploration under a fixed confidence setting in episodic fixed-
horizon MDPs. We demonstrate that PSPE can achieve
a high confidence in lesser number of episodes than PSRL
or random exploration. We also show that PSPE is able
to achieve deep exploration like PSRL. For the two phase
exploration problem, we show that by using PSPE in the
exploration phase, we get higher rewards in the evaluation
phase. In the bandit setting, we show that PTS achieves
the best possible posteriors in a limited budget. Since PTS
is a special case of PSPE, we claim that using PSPE in the
exploration phase gives posterior distributions which enable
PSRL to obtain higher rewards in the evaluation phase.

APPENDIX
A. NON STATIONARY POLICIES

Unlike infinite horizon MDPs the policies we consider here
are non-stationary, i.e. the action depends on the state s
and current step in the episode h. We present an example
to show that non stationary policies are necessary for fixed
horizon episodic MDPs. Consider the MDP in Figure 10. It
has 4 states, two actions and horizon length 3 starting from
s0. Choosing to go right from s0 will end in going to s2 or

s0s1 s2 s31 5

Figure 10: Episodic fixed-horizon MDP

remaining in s0 with equal probability. The only rewards in
the system have value 1 and 5 which are obtained by going
left at s1 and right at s3 respectively.

In this MDP, the best stationary policy is to always go
right. This policy’s expected total reward per episode is 2.5.
The best non-stationary policy however is to go right from s0

at h = 1. If it succeeds to go to s2, then it can get a reward
of 5 by continuing right until the episode ends. However, if
it remains in s0, it can get a reward of 1 by going left until
the episode ends. Hence the expected total reward for the
best non-stationary policy is 3.

B. FIXED HORIZON DYNAMIC PROGRAM-
MING

Here we describe the Backward Induction algorithm for
computing the optimal policy of a fixed-horizon MDP when
its average rewards and transition probabilities are known.
The algorithm iterates backwards from h = H to h = 1.
At h = H, the Q values for each state-action are equal to
their immediate rewards as it is the end of the episode. At
each step, it computes the Q values by applying the Bellman
Operator for each state and action. The time complexity of
this algorithm is O(S2AH) as applying the Bellman Opera-
tor requires O(S) steps and we do this SAH times.

Algorithm 3 Backward Induction

1: Q(s,a,H) = R̄(s,a) for all s ∈ S and a ∈ A
2: V (s,H) = max

a
{Q(s,a,H)} for all s ∈ S

3: for h = H−1,..,1 do
4: for s ∈ S do
5: for a ∈ A do
6: Q(s,a,h) = R̄(s,a)+

∑
s′∈S

P (s,a,s′)V (s′,h+1)

7: end for
8: V (s,h) = max

a
{Q(s,a,h)}

9: π(s,h) = argmax
a
{Q(s,a,h)}

10: end for
11: end for
12: return π
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